
1 Capacité thermique

Exercice 1 : Barre d’acier (Test de présélection 2025)

On plonge une barre d’acier de 600g chauffée dans un calorimètre contenant 0,5 L d’eau
à température ambiante (θamb = 25◦C). On considère que l’ensemble forme un système
isolé et on néglige les transferts thermiques sur les parois. Les capacités thermiques
massiques entrant en jeu sont ceau = 4185J.kg−1.K−1 et cacier = 440J.kg−1.K−1. Quelle est
la température minimale de l’acier pour amener l’eau à ébullition ?

1. 109◦C

2. 494◦C

3. 594◦C

4. 694◦C

Exercice 2 : Boisson fraîche (Test de présélection 2024)

Combien de glaçons sont nécessaires pour refroidir à 10◦C un litre de jus de fruit
initialement à 30◦C qui sera assimilé à de l’eau liquide de capacité thermique ceau =
4, 2kJ.K−1.kg−1 ? On considère que les glaçons sont initialement à 0◦C et que lorsqu’ils
fondent se transforment en eau liquide et absorbent q = 330kJ.kg−1. On supposera que
les glaçons sont de volume identique V = 10cm3 et de masse volumique ρg = 931kg.m−3.
On néglige les échanges thermiques du jus de fruit avec son environnement.

1. 24

2. 32

3. 21

4. 27

Exercice 3 : À la douche

Un fidèle spectateur de PhysiCité prend une douche à 35◦C. Les arrivées d’eau chaude et
d’eau froide sont respectivement à θc = 60◦C et θf = 10◦C. Déterminer le rapport entre
les débits.
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2 Premier principe de la thermodynamique

Exercice 4 : Chute d’Iguazu

On considère une goutte d’eau initialement au sommet de la Garganta del Diablo
qui s’écrase sur un caillou au pied des chutes. A l’aide du premier principe de la
thermodynamique, déterminer si la température de la goutte d’eau varie entre l’état
initial et le moment où elle est au pied de la cascade.

— Altitude : 81 m

— Capacité thermique massique de l’eau : c = 4, 18kJ/kg/K

— Intensité de la pesanteur g = 9, 81N/kg

Exercice 5 : Frottement des mains

L’hiver, on se frotte les mains pour se réchauffer. On suppose que la puissance de
frottement est intégralement transmise à l’épiderme. Si l’on considère l’épiderme comme
un système fermé, déterminer l’élévation de température lorsque l’on frotte ses mains
pendant 60s.

— Epaisseur de l’épiderme au niveau de la main e = 1mm

— Surface de la paume de la main : S = 150cm2

— Masse volumique de l’épiderme : ρ = 1, 0.103kg/m3

— Capacité thermique massique de l’épiderme c = 4, 18kK/kg/K

— Puissance de frottement : P = 20W

Exercice 6 : Whisky "on the rocks"

Pour rafraîchir un whisky, on peut utiliser des glaçons, mais en se réchauffant ils
fondent, diluant la boisson. On utilise donc un cube de granite de côté a, de masse
volumique ρ et de capacité thermique massique c à la place. On l’a laissé se réchauffer
à température ambiante T0 = 15◦C. On le place ensuite dans un congélateur à T1 = −4◦C.
On néglige tous les effets autres que les transferts conducto-convectifs, et on note h le
coefficient de transfert conducto-convectif. On s’intéresse à la dynamique temporelle
de la température T du bloc (qu’on suppose uniforme).

1. On se place entre t et t+ dt. Calculer la variation de l’énergie interne du bloc dU en
fonction de c, ρ, a et dT = T (t+ dt)− T (t).

2. Exprimer dU en fonction de h, a, T , T1 et dt.

3. En déduire que T vérifie l’équation différentielle :

dT

dt
+

T

τ
=

T∞
τ

Préciser les expressions de τ et T∞.

4. Résoudre cette équation dans le cas étudié.
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Exercice 7 : L’effet de serre (adapté des IPhO 2024)

Nous introduisons un modèle simple dans lequel l’atmosphère terrestre est représentée
par une fine couche située à une faible distance au-dessus de la surface de la Terre,
de sorte que la différence entre l’aire de la couche atmosphérique et celle de la
surface terrestre peut être négligée. Dans ce qui suit, on suppose que la majeure
partie du rayonnement thermique provenant de la Terre et du Soleil est émise à des
longueurs d’onde proches de leur λmax respectif. On suppose également que la "couche
atmosphérique" réfléchit une fraction rA = 0,255 du rayonnement visible-ultraviolet
incident, qu’il vienne d’en haut ou d’en bas, et qu’elle transmet entièrement le reste.
On suppose en outre que l’atmosphère ne réfléchit aucune partie du rayonnement infra-
rouge ; cependant, elle en absorbe une fraction ε et transmet le reste. Ce comportement,
connu sous le nom d’effet de serre, modifie la température moyenne de la Terre.
La surface terrestre, quant à elle, réfléchit une fraction rE du rayonnement visible–
ultraviolet, et absorbe le reste de ce rayonnement ainsi que l’ensemble du rayonnement
infrarouge. Le rayonnement d’un corps noir est donné par la loi de Stefan Boltzmann :

U(T ) = σT 4

où σ = 5, 67.10−8W/m2/K4. Le Soleil émet une puissance surfacique S0 au niveau de la
Terre, sur une surface normale. La température de surface du Soleil est TS = 5, 77.103K.
La distance Terre-Soleil vaut d = 1, 5.1011m.

1. Déterminer S0.

2. En tenant compte de la géométrie, déterminer la puissance surfacique effectivement
reçue par la Terre en terme de fraction de S0.

3. En prenant ε = 1 et rE = 0, calculer la température de la Terre et la température de
l’atmosphère.

Maintenant, on considère rE ̸= 0, rE = 0, 102. Dans ce cas, le système Terre-atmosphère
reflète une fraction différente de la radiation solaire nommée albedo et notée α.

4. Déterminer numériquement la valeur de l’albedo.

5. Déterminer la température de la Terre en fonction de σ, α, S0 et ε.

6. Exprimer dTE
dε et déterminer de combien la température de la Terre augmente si ε

augmente d’un pourcent.

On considère à présent TA = 245K et TE = 288K. On ajoute un flux thermique J =
k(TE − TA) de la Terre vers ll’atmosphère. Cette quantité est la puissance surfacique
transmise.

7. Calculer ε, TE , TA, σ, α et S0.

8. Dériver les équations de la questions précédente par rapport à ε et déterminer
deux équations satisfaites par dTA

dε et dTE
dε .

Indices : Une somme géométrique infinie (appelée série) s’écrit ∑+∞
n=0 an =

1
1−a
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Exercice 8 : Température du Soleil sans réaction thermonucléaire

Dans cet exercice, on va montrer que l’énergie du Soleil ne peut pas provenir uniquement
de l’énergie gravitationnelle qu’il a accumulé en s’effondrant. On va raisonner par ordres
de grandeur.

Admettons que l’énergie potentielle V associée à l’interaction gravitationnelle est reliée
à la force par :

−dV

dr
= F (r)

1. En déduire qu’à une constante près (qu’on prendra nulle),

V (r) = −Gm1m2

r

2. En déduire que la variation d’énergie potentielle gravitationnelle de gaz lors de son
effondrement est de l’ordre de

∆Ep = −
GM2

S

RS

3. Discuter le signe (est-ce cohérent avec le caractère attractif de l’interaction
gravitationnelle ?).

4. On suppose que cette énergie est intégralement dissipée sous forme de chaleur.
Ensuite, on suppose que le Soleil a aujourd’hui une température uniforme (ce qui
est bien sûr faux...) et avait une température nulle avant son effondrement. Montrer
que la variation d’énergie interne du gaz vaut :

∆U = CMS∆T

5. En déduire la température du Soleil.

6. En réaliser une application numérique, en prenant comme C celui typique du gaz
d’hydrogène, C ≈ R

MH
(où MH est la masse molaire de l’hydrogène).

7. Comparer à la température estimée à l’intérieur du Soleil, de 15 millions de degrés.
Commenter. On rappelle que le Soleil a environ 4.5 milliards d’années, et qu’il en
est à peu près à la moitié de sa vie.
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Exercice 9 : L’éruption du volcan Mérapi (adapté de l’épreuve des IPhO 2017)

Dans ce problème, nous cherchons à comprendre les causes de la plus grande éruption
du Mérapi en 2010. Les géophysiciens savent que l’effet de l’eau (extérieure ua volcan)
sur le magma joue un rôle important dans le comportement explosif des éruptions
volcaniques. Supposons que le volcan considéré ici est un système composé d’un
mélange de particules magmatiques et d’eau. La cheminée du volcan et l’atmosphère
représentent les limites du système. On peut considérer qu’une éruption explosive se
déroule en deux phases. Une interaction magma-eau instantanée et une expansion du
système. Dans la première phase, une masse mm de magma de température Tm est
mélangée à une masse mw d’eau d’origine extérieure de température Tw. L’équilibre
thermique est atteint pratiquement instantanément. On peut considérer cette interaction
comme un processus à volume quasi constante (isochore). L’enthalpie de vaporisation
de l’eau de même que l’enthalpie de fusion du magma peuvent être négligée.

1. Déterminer la température d’équilibre à la fin de la première phase en fonction des
masses de l’eau et du magma ainsi que des capacités thermiques de l’eau Cvw et
Cvm du magma.

2. Déterminer la pression à l’équilibre à la fin de la première phase en supposant que
le mélange eau-magma peut être considéré comme un gaz parfait. On notera ve le
volume molaire du mélange.

L’expansion du système (seconde phase) peut être provoquée de différentes manières,
l’une d’entre-elles étant une détonation thermique. Bien qu’un tel processus soit plutôt
compliqué, nous pouvons cependant mesurer de façon empirique la vitesse relative
du mélange éjecté lors de l’éruption. La vitesse d’un gaz lors de l’éruption dépend de
la pression p, de la masse totale m et du volume V du mélange dans la cheminée du
volcan.

3. Exprimer la vitesse du gaz durant l’éruption en fonction de p, V et m à une constante
multiplicative près.

3 Gaz parfait

Exercice 10 : Equilibre d’une montgolfière

Une montgolfière est immobile dans l’atmosphère. Déterminer la température de l’air à
l’intérieur de l’enveloppe. On considère que l’air se comporte comme un gaz parfait.

— Masse de l’ensemble mtot = 500kg

— Volume de l’enveloppe V = 2000m3

— Conditions ambiantes : p0 = 1, 013bar et θ0 = 12, 0◦C

— Masse molaire de l’air M = 29, 0g/mol

— Constante des gaz parfaits R = 8, 314J/K/mol
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Physicité IPhO : Thermodynamique (exercices)

Exercice 11 : Equation d’état des gaz non parfaits (adapté des IPhO 2014)

Dans le modèle bien connu du gaz parfaits, les effets physiques décrits ci-après sont
négligeables. Les atomes du gaz réel ont un volume non négligeable et ils interagissent
entre eux. Dans le problème, on considère une seule mole d’eau.

Equation d’état d’un gaz non idéal

Compte-tenu de la taille non négligeable des atomes, l’équation d’état d’un gaz prend la
forme P (V − b) = RT , avec V le volume molaire.

1. Estimer b en fonction du diamètre atomique.

En prenant en compte, les forces intermoléculaires, Van der Waals a proposé l’équation
d’état suivante, qui décrit les états gazeux et liquides de la matière :

(P +
a

V 2
)(V − b) = RT

Propriétés d’un mélange gaz-liquide

Cette partie concerne les propriéts de l’eau dans un mélange gaz/liquide à la température
de 100◦C. La pression de vapeur saturante, pression du gaz à l’équilibre avec la phase
liquide, à cette température est connue pour être égale à P0 = 1, 0.105Pa. La masse
molaire de l’eau est µ = 1, 8.10−2kg/mol et a = 0, 56m6.Pa.mol−2. Dans l’état gazeux, on
suppose VG ≫ b.

2. Déduire de cette approximation l’expression du volume du gaz et l’exprimer en
fonction de R, T, P0 et a.

3. En utilisant le modèle du gaz parfait un volume VG0 peut être évalué. Calculer
numériquement en pourcentage la diminution relative du volume du gaz, due aux
interactions.

Dans l’approximation du modèle de Van der Waals décrivant l’eau liquide, il est raison-
nable de supposer que l’inégalité suivant est vérifiée a

V 2 ≫ P .

4. Donner l’expression du volume d’eau liquide VL en fonction de a, b, R et T.

En supposant que bRT ≪ a, on peut estimer les grandeurs ci-dessous pour l’eau. On
rappelle l’approximation : (1 + x)α ≈

|x|≪1
1 + αx.

5. Exprimer la masse volumique de l’eau liquide ρL.

6. Exprimer le coefficient de dilation thermique α = 1
V

∆VL
∆T

6/14
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Exercice 12 : Démonstration de l’équation d’état du gaz parfait

On cherche à démontrer l’équation d’état du gaz parfait :

PV = nRT

Avec N le nombre de molécules et kB la constante de Boltzmann. On se place dans
un cas simplifié. La pression du gaz est due aux chocs des molécules sur la paroi. On
suppose qu’elles rebondissent parfaitement lors d’un tel choc, et repartent avec la
même énergie. On note de plus m la masse de chaque molécule.

On suppose de plus (considérer les angles complique beaucoup le problème) que toutes
les molécules vont (cf figure) :

1. À la même vitesse, v0.

2. Dans seulement trois directions de l’espace, dans les deux sens possibles. Il y a de
plus autant de molécules dans ces six orientations possibles.

De plus, la température vérifie, en vertu du théorème d’équipartition de l’énergie,

3

2
kBT =< Ec >

<> signifiant la moyenne statistique, et Ec étant l’énergie cinétique microscopique d’une
molécule.

1. Calculer v0 en fonction de la température.

2. On considère les particules qui entrent en collision avec la paroi, de surface S,
entre t et t+ dt. Dessiner le volume qui les contient.

3. En déduire que le nombre de particules qui entrent en collision avec la paroi
pendant dt est :

1

6

NSv0dt

V

4. La force subie par la paroi est la dérivée temporelle de la quantité de mouvement,
p = mv. Pour calculer la force, il faut donc calculer la variation de quantité de
mouvement de l’ensemble des particules qui entrent en collision avec la paroi
pendant dt entre avant et après le choc, puis diviser le résultat obtenu par dt.
Montrer que cette force vaut :

2mv0
1

6

NSv0
V

5. Conclure que, en définissant R = NAkB , on a :

PV = NkBT = nRT
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Physicité IPhO : Thermodynamique (exercices)

Exercice 13 : Gaz de photons

On considère un gaz de photons. On les suppose tous à la même longueur d’onde
λ, et on suppose que les parois de l’enceinte sont parfaitement réfléchissantes. On
adopte les mêmes hypothèses que dans l’exercice précédent, c’est-à-dire qu’on suppose
le gaz homocinétique (une seule vitesse possible, ce qui est vrai pour les photons)
et hexadirectionnel (les photons ne peuvent se déplacer que dans 6 directions). En
s’inspirant de l’exercice précédent, établir l’équation d’état du gaz de photons :

P =
1

3

U

V
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4 Transferts thermiques

Exercice 14 : Chauffe-eau solaire

Un chauffe-eau solaire de toit à utilisation domestique est modélisé par un tuyau
d’axe Ox à section rectangulaire en cuivre de largeur b peint en noir (pour absorber le
rayonnement) reposant sur sa face inférieure sur un isolant thermique et exposé au soleil
par sa face supérieure. Les faces latérales verticales sont également calorifugées et ne
reçoivent aucun rayonnement. Le tuyau est parcouru par un courant d’eau permanent
dans la direction de l’axe x et de débit massique Dm. La capacité thermique de l’eau est
cp = 4, 2kJ kg−1K−1.

La lumière solaire est entièrement absorbée par le tuyau. L’éclairement du tuyau
(puissance solaire reçue par unité de surface de tuyau) est notée E. On étudie le régime
permanent d’écoulement une fois celui-ci établi. Le régime transitoire de montée en
température n’est pas abordé : la température ne dépend donc pas du temps. On
supposera que T = T (x).

Le cuivre étant un excellent conducteur thermique, on peut supposer que tout le métal,
y compris sa face noircie est à la même température T (x) que l’eau dans le tuyau à la
même abscisse x. Les seuls transferts thermiques envisagés se font selon y (pas de
diffusion thermique dans le sens x de la convection, ni dans l’eau ni dans le cuivre). Si
l’air extérieur à la température T0 est plus froid que le tuyau, il y a inévitablement des
pertes thermiques vers l’atmosphère (ou un gain si l’air extérieur est plus chaud).

1. Préciser l’origine physique de ces pertes, et justifier qu’elles peuvent s’écrire par
unité de longueur sous la forme dPpertes = αb(T − T0)dx où α est une constante dont
l’expression n’est pas demandée.

2. Appliquer le premier principe en régime stationnaire à l’eau contenue entre les
abscisses x et x+ dx. On posera θ(x) = T (x)− T0. Quelle est l’équation vérifiée par
θ(x) ?

3. Résoudre cette équation en supposant que l’eau entre en x = 0 à la température
T1. On fera apparaître une dimension L caractéristique du problème. Le débit
massique étant imposé par le cahier des charges, quelle longueur faut-il choisir
pour optimiser le dispositif ? Pourquoi est-il préférable de placer l’ensemble sous
une vitre transparente ?
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Physicité IPhO : Thermodynamique (exercices)

Exercice 15 : Équation de la chaleur

Dans tout l’exercice, on utilisera les dérivées partielles. Si f est une fonction de x et de y,
la dérivée partielle de f par rapport à x est notée ∂f

∂x (x, y) =
f(x+dx,y)−f(x,y)

dx . Pour calculer
une dérivée partielle, on fait un calcul habituel de dérivée par rapport à x en considérant
que y est fixé. Par exemple, si f(x, y) = x3y−y2+ x

y ,
∂f
∂x (x, y) = 3x2y+ 1

y ,
∂f
∂y (x, y) = x3−2y− x

y2
.

On peut ensuite faire des dérivées secondes : ∂2f
∂x2 (x, y) =

∂f
∂x

(x+dx,y)− ∂f
∂x

(x,y)

dx , ∂2f
∂y∂x(x, y) =

∂f
∂x

(x,y+dy)− ∂f
∂x

(x,y)

dy . Pour la fonction donnée en exemple, ∂2f
∂x2 (x, y) = 6xy

On considère une barre, de section S dont la température est notée T (x, t) : elle dépend
à la fois de la position x et du temps t. On veut établir une équation sur T .

On considère une "coupe" de la barre en x. On suppose que le flux de transfert thermique,
c’est-à-dire la puissance transmise par unité de surface, de la partie gauche de la barre
vers la partie droite, s’écrit

jQ = −λ
∂T

∂x
(x, t)

C’est la loi de Fourier. ∂T
∂x (x, t) désigne la dérivée de T par rapport à x, à t fixé.

1. Discuter du signe devant la dérivée partielle. Qu’est-ce que cela veut dire vis-à-vis
du flux d’énergie ?

On considère le système fermé suivant : la partie de la barre située entre les
abscisses x et x+ dx (cf figure 4). On effectue un bilan d’énergie entre les dates t
et t+ dt, avec dx et dt infiniment petits.

jQ(x, t) jQ(x+ dx, t)

x x+ dx

2. Montrer que le premier principe s’écrit :

dU(x, t+ dt)− dU(x, t) = S(jQ(x, t)− jQ(x+ dx, t))dt

avec dU l’énergie interne du système.

3. Calculer dU en fonction de c la capacité thermique massique du système, ρ sa
masse volumique, T sa température, dx et S.

4. En notant ∂2T
∂x2 = ∂

∂x
∂T
∂x , montrer l’équation de la chaleur :

ρc
∂T

∂t
= λ

∂2T

∂x2

5. On pose D = λ
ρc le coefficient de diffusion. Donner, en fonction de D, une longueur

typique sur laquelle se sera propagée l’énergie en un temps t.

6. Montrer que les solutions, si un état stationnaire est atteint, sont des fonctions
affines de x.

7. On suppose que notre barre est connectée à gauche (en x = 0) à un thermostat (un
réservoir qui impose à la barre sa température) à la température T1, et à droite (en
x = L) à un thermostat à la température T2. Calculer T (x) dans l’état stationnaire.
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Physicité IPhO : Thermodynamique (exercices)

Exercice 16 : Cuire un œuf dur (IPhOs 2006)

Un œuf, sorti directement du réfrigérateur à la température T0 = 4◦C, est plongé dans
une casserole d’eau bouillante à la température T1.

1. Quelle est la quantité d’énergie U requise pour coaguler tout l’intérieur de l’œuf ?

2. Quelle est la valeur du flux de transfert thermique j qui s’écoule dans l’œuf ?

3. Quelle est la puissance thermique P transmise à l’œuf ?

4. Pendant combien de temps devriez-vous cuire l’œuf afin qu’il devienne dur ?

Indications : j est défini comme dans l’exercice précédent, la puissance transmise par
unité de surface, de l’extérieur vers l’intérieur, il s’exprime en Wm−2. Vous pouvez
utiliser la forme simplifiée de la loi de Fourier j = κ∆T/∆r , où ∆T est la différence de
température caractéristique observée sur l’échelle de longueur typique du problème ∆r.

Données : La masse volumique de l’œuf : µ = 103kgm−3.

La capacité thermique massique de l’œuf : C = 4.2JK−1 g−1

Rayon de l’œuf : R = 2.5cm

La température de coagulation de l’albumen (protéine de l’œuf) : Tc = 65◦C.

Le coefficient de transport thermique : κ = 0.64WK−1m−1 (en admettant qu’il est le
même pour l’albumen liquide et solide).

5 Problème

L’exercice suivant est un problème complet issu du test de présélection français de 2025.
Il nécessite la maîtrise du cours sur les ondes et du cours de thermodynamique et peut être
utilisé comme problème de révision de ces deux chapitres.

Problème : Le thermophone à tube à essai (adapté du test de présélection des IPhO
2025)

Dans tout l’exercice, on utilise la notation ∂
∂y pour indiquer qu’on dérive une fonction qui

dépend de plusieurs variables par rapport à y en laissant fixes les autres variables.
Dans ce problème, on sera également amené à utiliser la deuxième loi de Newton (aussi

appelée principe fondamental de la dynamique (PFD)). Cette loi, au programme de terminale,
sera décrite lors du cours de mécanique 1. La masse d’un objet multipliée par l’accélération de
son centre de masse est égale à la somme des forces extérieures qui s’appliquent sur le corps.

Introduction

La thermoacoustique est l’étude des phénomènes résultant de l’interaction entre un flux
de chaleur et une onde acoustique. Bien que cette thématique de recherche soit peu connue
du grand public, les manifestations de l’effet thermoacoustique sont en fait observées depuis
longtemps. Les souffleurs de verre constatent par exemple depuis des siècles que leurs tubes
produisent parfois de violents sifflements. Dans ce problème, on étudie la production d’un son
musical grâce à l’effet thermoacoustique, par l’introduction d’une source de chaleur localisée
dans un tuyau sonore. Le premier instrument de musique fonctionnant sur ce principe était
un orgue à flammes construit par Kastner en 1873, qu’il appela « pyrophone ». Le pyrophone

11/14



Physicité IPhO : Thermodynamique (exercices)

fut perfectionné dans les années 2000 par Jacques Rémus, musicien et plasticien, qui mit au
point le « thermophone », dans lequel il remplaça les flammes par des résistances électriques
chauffantes. Un thermophone est formé d’un tuyau en acier doux, verre ou aluminium, qui est
ouvert au moins à l’une de ses extrémités pour rendre le son audible. À l’intérieur du tuyau,
on place un stack solide (empilement de plaques ou grilles métalliques, ou réseau de canaux
rectangulaires en céramique), et on le chauffe. Lorsque la température de l’extrémité chaude
devient suffisamment élevée, le thermophone se met à chanter . . . Il génère un son particulier,
puissant et très pur spectralement.

1. Onde acoustique dans un tube à essai

Le tube à essai est assimilé à une enceinte cylindrique indéformable de longueur L= 14 cm,
de section d’aire S et dont l’axe de symétrie est selon la direction de l’axe (Ox). L’extrémité
fermée du tube est située à l’abscisse x = 0 et son extrémité ouverte à x = L. Au repos,
c’est-à-dire en l’absence d’onde sonore, la température, la pression et la masse volumique de
l’air dans le tube sont uniformes notées respectivement T0, P0 et ρ0. Par ailleurs, on néglige
tout effet de la pesanteur, ainsi que toutes les interactions visqueuses entre le gaz et les
parois du tube de sorte que le mouvement du gaz se fait uniquement dans la direction x. Les
propriétés du gaz peuvent alors être considérées uniformes dans les directions transverses
y et z à tout instant. Pour décrire les vibrations de la colonne d’air dans le tube à essai, on
la « découpe » en portions mésoscopiques qu’on appelle « particules de fluide ». Le volume
de ces particules est suffisamment grand par rapport à l’échelle microscopique pour qu’on
puisse y définir une pression, une température et une masse volumique. Mais il est également
suffisamment petit par rapport à l’échelle macroscopique pour pouvoir considérer que toutes
ces grandeurs y sont uniformes.

Le système étudié à partir de maintenant est une particule de fluide dans le tube, d’épaisseur
dx ≪ L, de surface dS et de volume dV = dxdS. En l’absence de viscosité, cette particule est
astreinte à se déplacer longitudinalement, sa position étant repéré par l’abscisse x(t) de sa
face gauche. Quand une onde stationnaire se forme dans le tube, la particule oscille autour de
sa position d’équilibre notée x0. Ainsi x(t) = x0+ξ(x, t), avec ξ(x, t) le « déplacement longitudinal
» de la particule qu’on admet être de la forme ξ(x, t) = ξm sin(kx) cos(ωt), où ξm est l’amplitude
des oscillations acoustiques, ω = 2πf la pulsation de l’onde et f sa fréquence, k = 2π

λ son
nombre d’onde et λ sa longueur d’onde.

1. Rappeler la relation liant la célérité c d’une onde, sa fréquence f et sa longueur d’onde λ
En déduire la relation liant ω et k.

La pression et la température locales s’écrivent :

P (x, t) = P0 + p(x, t), p(x, t) = −pm cos(kx) cos(ωt),

T (x, t) = T0 + τ(x, t), τ(x, t) = −τm cos(kx) cos(ωt),
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et la masse volumique :
ρ(x, t) = ρ0 − ϱm cos(kx) cos(ωt).

On admet ϱm/ρ0 ≪ pm/P0 et ϱm/ρ0 ≪ τm/T0, donc ρ ≃ ρ0.
On admet également :

τm =
γ − 1

γ

pm
P0

T0, γ = 1.4.

2. Exprimer les forces de pression exercées par les particules voisines situées juste à gauche
et juste à droite.

3. Exploiter la seconde loi de Newton pour en déduire, dm = ρ0dV :

ρ0
∂2ξ

∂t2
= −∂p

∂x
.

4. Exprimer pm en fonction de c, ω, ρ0 et ξm.
5. En supposant la surpression acoustique nulle en x = L, montrer que :

k = (2n+ 1)
π

2L
.

6. Analyser le spectre en fréquences fourni.
7. Montrer, à partir des réponses aux questions 1 et 6, que la fréquence du son produit par

le thermophone de la vidéo introductive correspond au mode propre fondamental de
vibration du tube. On donne la valeur de la célérité du son dans l’air à une température
de 20◦C, sous pression atmosphérique : c = 340m.s−1. Commenter l’écart éventuellement
constaté avec la mesure expérimentale.

2. Condition d’amplification thermoacoustique

13/14



Physicité IPhO : Thermodynamique (exercices)

Un stack de longueur ℓ est centré en xs = L/2. Ses extrémités sont à :

Tc = T0 +
∆Ts

2
, Tf = T0 −

∆Ts

2
.

La température du stack est :

Ts(x) = T0 +
∆Ts

ℓ
(xs − x) = T0 +∇Ts(xs − x), ∇Ts =

∆Ts

ℓ
.

Au centre (x0 = xs), la particule oscille :

ξ(x, t) = ξm sin(kxs) cos(ωt), kxs =
π

4
.

Pour simplifier la modélisation qui suit, le mouvement sinusoïdal de la particule est désormais
décomposé en une phase de mouvement rapide 1 → 2, une phase d’arrêt 2 → 3, une nouvelle
phase de mouvement rapide en sens inverse 3 → 4 et une dernière phase d’arrêt 4 → 1. Cette
séquence « articulée » de mouvements est représentée ci-dessous.

8. Déterminer les positions x41 et x23.

9. En déduire Ts,41 et Ts,23 de façon approchée.

Quand la particule de fluide se déplace rapidement le long du stack, elle n’a pas le temps
d’échanger une quantité significative de chaleur avec la plaque. Sa température à l’issue des
phases de mouvement 1 → 2 et 3 → 4 est donc celle associée à l’onde acoustique.

T (x, t) = T (xs, t) = T0 + τ(xs, t) = T0 − τm cos(kxs) cos(ωt)

avec kxs =
π
4 .

10. Déterminer les températures T2 et T4 de la particule à la fin des phases de mouvement
1 → 2 et 3 → 4 en fonction de T0, ∇Ts et τm.

Pour que la particule fournisse effectivement un travail au fluide environnant et participe, avec
toutes les autres particules dans le stack, à amplifier puis entretenir l’onde stationnaire dans
le tube, il faut qu’elle reçoive (respectivement qu’elle cède) de la chaleur du stack depuis le
point de température la plus élevée (respectivement la moins élevée) de son mouvement.

11. Montrer alors qu’il y a conversion d’énergie thermique en travail acoustique à condition
que le gradient de température du stack soit suffisamment grand.

Préparation aux olympiades – version 2025-26 – contributeur·ice·s : Loïse Launay, Mathurin Rouan

14/14


	Capacité thermique
	Premier principe de la thermodynamique
	Gaz parfait
	Transferts thermiques
	Problème

