IPhO : Thermodynamique
(exercices)

O Physicité

1 Capacité thermique

Exercice 1: Barre d’acier (Test de présélection 2025)

On plonge une barre d’acier de 600g chauffée dans un calorimetre contenant 0,5 L d’eau
a température ambiante (0,,,, = 25°C). On considére que ’ensemble forme un systeme
isolé et on néglige les transferts thermiques sur les parois. Les capacités thermiques
massiques entrant en jeu sont ceq, = 4185J.kg L. K~ ! et cuier = 440J.kg~ 1. K. Quelle est
la température minimale de l’acier pour amener l’eau a ébullition ?

1. 109°C
2. 494°C
3. 594°C
4, 694°C

Exercice 2 : Boisson fraiche (Test de présélection 2024)

Combien de glagons sont nécessaires pour refroidir a 10°C' un litre de jus de fruit
initialement a 30°C qui sera assimilé a de l’eau liquide de capacité thermique ceqy =
4,2kJ. K~ 1.kg~'? On considére que les glagons sont initialement & 0°C et que lorsqu’ils
fondent se transforment en eau liquide et absorbent ¢ = 330kJ.kg~'. On supposera que
les glagons sont de volume identique V = 10cm?® et de masse volumique p, = 931kg.m 3.
On néglige les échanges thermiques du jus de fruit avec son environnement.

24
32
21

27

P O N

Exercice 3 : A la douche

Un fidele spectateur de PhysiCité prend une douche a 35°C. Les arrivées d’eau chaude et
d’eau froide sont respectivement a §. = 60°C et 6y = 10°C. Déterminer le rapport entre
les débits.
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O Physicité IPhO : Thermodynamique (exercices)

2 Premier principe de la thermodynamique

Exercice 4 : Chute d’Iguazu

On considere une goutte d’eau initialement au sommet de la Garganta del Diablo
qui s’écrase sur un caillou au pied des chutes. A l'aide du premier principe de la
thermodynamique, déterminer si la température de la goutte d’eau varie entre l’état
initial et le moment ou elle est au pied de la cascade.

— Altitude : 81 m
— Capacité thermique massique de leau : ¢ =4,18kJ/kg/K

— Intensité de la pesanteur g = 9,81N/kg

Exercice 5 : Frottement des mains

L’hiver, on se frotte les mains pour se réchauffer. On suppose que la puissance de
frottement est intégralement transmise a ’épiderme. Si 'on considére ’épiderme comme
un systeme fermé, déterminer ’élévation de température lorsque l'on frotte ses mains
pendant 60s.

— Epaisseur de l’épiderme au niveau de la main e = lmm

— Surface de la paume de la main : S = 150cm?

— Masse volumique de Uépiderme : p = 1,0.103kg/m3

— Capacité thermique massique de 'épiderme ¢ = 4,18kK/kg/K
— Puissance de frottement : P = 20W

Exercice 6 : Whisky "on the rocks"

Pour rafraichir un whisky, on peut utiliser des glagons, mais en se réchauffant ils
fondent, diluant la boisson. On utilise donc un cube de granite de c6té a, de masse
volumique p et de capacité thermique massique ¢ a la place. On l’a laissé se réchauffer
a température ambiante T, = 15°C. On le place ensuite dans un congélateur a 73 = —4°C.
On néglige tous les effets autres que les transferts conducto-convectifs, et on note i le
coefficient de transfert conducto-convectif. On s’intéresse a la dynamique temporelle
de la température T du bloc (gqu’on suppose uniforme).

1. On se place entre ¢t et ¢ + dt. Calculer la variation de ’énergie interne du bloc dU en
fonction de ¢, p, a et dT =T(t + dt) — T(t).

2. Exprimer dU en fonction de h, a, T, T et dt.
3. En déduire que T vérifie ’équation différentielle :
dI' T Ty
@& T T
Préciser les expressions de 7 et T.

4. Résoudre cette équation dans le cas étudié.
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 7 : L’effet de serre (adapté des IPhO 2024)

Nous introduisons un modele simple dans lequel 'atmosphere terrestre est représentée
par une fine couche située a une faible distance au-dessus de la surface de la Terre,
de sorte que la différence entre l'aire de la couche atmosphérique et celle de la
surface terrestre peut étre négligée. Dans ce qui suit, on suppose que la majeure
partie du rayonnement thermique provenant de la Terre et du Soleil est émise a des
longueurs d’onde proches de leur \,.x respectif. On suppose également que la "couche
atmosphérique" réfléchit une fraction r4 = 0,255 du rayonnement visible-ultraviolet
incident, qu’il vienne d’en haut ou d’en bas, et qu’elle transmet entierement le reste.
On suppose en outre que 'atmosphere ne réfléchit aucune partie du rayonnement infra-
rouge; cependant, elle en absorbe une fraction ¢ et transmet le reste. Ce comportement,
connu sous le nom d’effet de serre, modifie la température moyenne de la Terre.

La surface terrestre, quant a elle, réfléchit une fraction rr du rayonnement visible-
ultraviolet, et absorbe le reste de ce rayonnement ainsi que ’ensemble du rayonnement
infrarouge. Le rayonnement d’un corps noir est donné par la loi de Stefan Boltzmann :

U(T) = oT*

ol o = 5,67.1078W/m?/K*. Le Soleil émet une puissance surfacique Sy au niveau de la
Terre, sur une surface normale. La température de surface du Soleil est Tg = 5,77.10°K.
La distance Terre-Soleil vaut d = 1,5.10''m.

1. Déterminer Sg.

2. En tenant compte de la géométrie, déterminer la puissance surfacique effectivement
regue par la Terre en terme de fraction de 5.

3. En prenant e =1 et rg = 0, calculer la température de la Terre et la température de
’atmosphere.

Maintenant, on considere rg # 0, rg = 0,102. Dans ce cas, le systéme Terre-atmosphere
reflete une fraction différente de la radiation solaire nommeée albedo et notée a.

4. Déterminer numériquement la valeur de ['albedo.

5. Déterminer la température de la Terre en fonction de o, «, Sy et e.

6. Exprimer ddTEE et déterminer de combien la température de la Terre augmente si ¢

augmente d’un pourcent.

On considere a présent T4 = 245K et Ty = 288K. On ajoute un flux thermique J =
kE(Tg — T4) de la Terre vers ll’atmosphere. Cette quantité est la puissance surfacique
transmise.

7. Calculer ¢, Tg, T4, o, o et Sy.

8. Dériver les équations de la questions précédente par rapport a ¢ et déterminer
deux équations satisfaites par 44 et 4z,

Indices : nus 2owwe Bsowsriidnes [WLIWIE (Sbbefes 2eLis) 2,6cLif § W 0 a = 1=
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 8 : Température du Soleil sans réaction thermonucléaire

Dans cet exercice, on va montrer que l’énergie du Soleil ne peut pas provenir uniquement
de ’énergie gravitationnelle qu’il a accumulé en s’effondrant. On va raisonner par ordres
de grandeur.

Admettons que l’énergie potentielle V' associée a linteraction gravitationnelle est reliée

a la force par:
dVv
- _—F
= (r)

1. En déduire qu’a une constante pres (qu’on prendra nulle),

V) = — Gmims

r

2. En déduire que la variation d’énergie potentielle gravitationnelle de gaz lors de son
effondrement est de l'ordre de

oME
Rs

AE, =

3. Discuter le signe (est-ce cohérent avec le caractére attractif de linteraction
gravitationnelle ?).

4. On suppose que cette énergie est intégralement dissipée sous forme de chaleur.
Ensuite, on suppose que le Soleil a aujourd’hui une température uniforme (ce qui
est bien sOr faux...) et avait une température nulle avant son effondrement. Montrer
que la variation d’énergie interne du gaz vaut :

AU = CMsAT

5. En déduire la température du Soleil.
6. En réaliser une application numérique, en prenant comme C celui typique du gaz
d’hydrogéne, C ~ 4t (ou My est la masse molaire de Uhydrogene).

7. Comparer a la température estimée a lintérieur du Soleil, de 15 millions de degrés.
Commenter. On rappelle que le Soleil a environ 4.5 milliards d’années, et qu’il en
est a peu prés a la moitié de sa vie.
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 9 : L’éruption du volcan Mérapi (adapté de I’épreuve des IPhO 2017)

Dans ce probleme, nous cherchons a comprendre les causes de la plus grande éruption
du Mérapi en 2010. Les géophysiciens savent que l’effet de ’eau (extérieure ua volcan)
sur le magma joue un role important dans le comportement explosif des éruptions
volcaniques. Supposons que le volcan considéré ici est un systéeme composé d’un
meélange de particules magmatiques et d’eau. La cheminée du volcan et 'atmosphere
représentent les limites du systeme. On peut considérer qu’une éruption explosive se
déroule en deux phases. Une interaction magma-eau instantanée et une expansion du
systeme. Dans la premiere phase, une masse m,, de magma de température 7,, est
mélangée a une masse m, d’eau d’origine extérieure de température T,. L’équilibre
thermique est atteint pratiqguement instantanément. On peut considérer cette interaction
comme un processus a volume quasi constante (isochore). L’enthalpie de vaporisation
de 'eau de méme que l’enthalpie de fusion du magma peuvent étre négligée.

1. Déterminer la température d’équilibre a la fin de la premiére phase en fonction des
masses de l'eau et du magma ainsi que des capacités thermiques de l’eau C,,, et
Cym du magma.

2. Déterminer la pression a ’équilibre a la fin de la premiére phase en supposant que
le mélange eau-magma peut étre considéré comme un gaz parfait. On notera v, le
volume molaire du mélange.

L’expansion du systeme (seconde phase) peut étre provoquée de différentes manieres,
'une d’entre-elles étant une détonation thermique. Bien qu’un tel processus soit plutét
compliqué, nous pouvons cependant mesurer de facon empirique la vitesse relative
du mélange éjecté lors de 'éruption. La vitesse d’un gaz lors de ’éruption dépend de
la pression p, de la masse totale m et du volume V du mélange dans la cheminée du
volcan.

3. Exprimer la vitesse du gaz durant U'éruption en fonction de p, V et m a une constante
multiplicative pres.

3 Gaz parfait

Exercice 10 : Equilibre d’une montgolfiére

Une montgolfiére est immobile dans 'atmosphére. Déterminer la température de lair a
Uintérieur de 'enveloppe. On considere que l'air se comporte comme un gaz parfait.

— Masse de I’ensemble my,; = 500kg

— Volume de l’enveloppe V = 2000m3

— Conditions ambiantes : pg = 1,013bar et 6y = 12,0°C
— Masse molaire de lair M = 29,0g/mol

— Constante des gaz parfaits R = 8,314J/K/mol
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 11 : Equation d’état des gaz non parfaits (adapté des IPhO 2014)

Dans le modele bien connu du gaz parfaits, les effets physiques décrits ci-apres sont
négligeables. Les atomes du gaz réel ont un volume non négligeable et ils interagissent
entre eux. Dans le probleme, on considere une seule mole d’eau.

Equation d’état d’un gaz non ideal

Compte-tenu de la taille non négligeable des atomes, [’équation d’état d’un gaz prend la
forme P(V —b) = RT, avec V le volume molaire.

1. Estimer b en fonction du diametre atomique.

En prenant en compte, les forces intermoléculaires, Van der Waals a proposé [’équation
d’état suivante, qui décrit les états gazeux et liquides de la matiere :

(P + %)(V—b) = RT

Propriétés d’un mélange gaz-liquide

Cette partie concerne les propriéts de 'eau dans un mélange gaz/liquide a la température
de 100°C. La pression de vapeur saturante, pression du gaz a ’équilibre avec la phase
liquide, & cette température est connue pour étre égale & Py = 1,0.10°Pa. La masse
molaire de l'eau est u = 1,8.1072kg/mol et a = 0,56m5.Pa.mol~2. Dans l’état gazeux, on
suppose Vg > b.

2. Déduire de cette approximation U’expression du volume du gaz et U'exprimer en
fonction de R, T, P, et a.

3. En utilisant le modele du gaz parfait un volume Vo peut étre évalué. Calculer
numériquement en pourcentage la diminution relative du volume du gaz, due aux
interactions.

Dans l'approximation du modele de Van der Waals décrivant 'eau liquide, il est raison-
nable de supposer que linégalité suivant est verifiée % > P.

4. Donner l’expression du volume d’eau liquide V;, en fonction de a,b, R et T.

En supposant que bRT < a, on peut estimer les grandeurs ci-dessous pour l’eau. On

rappelle lapproximation : (1 +2)* ~ 1+ ax.
|z|1

5. Exprimer la masse volumique de l’eau liquide py.

6. Exprimer le coefficient de dilation thermique a = %%
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 12 : Démonstration de l’équation d’état du gaz parfait

On cherche a démontrer ’équation d’état du gaz parfait :
PV =nRT

Avec N le nombre de molécules et kg la constante de Boltzmann. On se place dans
un cas simplifié. La pression du gaz est due aux chocs des molécules sur la paroi. On
suppose gu’elles rebondissent parfaitement lors d’un tel choc, et repartent avec la
méme énergie. On note de plus m la masse de chaque molécule.

On suppose de plus (considérer les angles complique beaucoup le probléme) que toutes
les molécules vont (cf figure) :

1. A la méme vitesse, ;.

2. Dans seulement trois directions de l’espace, dans les deux sens possibles. Il y a de
plus autant de molécules dans ces six orientations possibles.

De plus, la température vérifie, en vertu du théoreme d’équipartition de l’énergie,

%kBT =< FE. >

<> signifiant la moyenne statistique, et E. étant l’énergie cinétique microscopique d’une
molécule.

1. Calculer vy en fonction de la température.

2. On considére les particules qui entrent en collision avec la paroi, de surface S,
entre t et ¢t 4 dt. Dessiner le volume qui les contient.

3. En déduire que le nombre de particules qui entrent en collision avec la paroi
pendant dt est :
lNSvodt
6 V

4. La force subie par la paroi est la dérivée temporelle de la quantité de mouvement,
p = mw. Pour calculer la force, il faut donc calculer la variation de quantité de
mouvement de ’ensemble des particules qui entrent en collision avec la paroi
pendant dt entre avant et apres le choc, puis diviser le résultat obtenu par dt.

Montrer que cette force vaut :

9 lNSU()
muvo—
% v

5. Conclure que, en définissant R = Nkp, on a:

PV = NkgT =nRT
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 13 : Gaz de photons

On considére un gaz de photons. On les suppose tous a la méme longueur d’onde
A, et on suppose que les parois de l’enceinte sont parfaitement réfléchissantes. On
adopte les mémes hypothéses que dans 'exercice précédent, c’est-a-dire qu’on suppose
le gaz homocinétique (une seule vitesse possible, ce qui est vrai pour les photons)
et hexadirectionnel (les photons ne peuvent se déplacer que dans 6 directions). En
s’inspirant de l’exercice précédent, établir 'équation d’état du gaz de photons :

11U

P=_-=
3V
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O Physicité IPhO : Thermodynamique (exercices)

4 Transferts thermiques

Exercice 14 : Chauffe-eau solaire

Un chauffe-eau solaire de toit a utilisation domestique est modélisé par un tuyau
d’axe Ox a section rectangulaire en cuivre de largeur b peint en noir (pour absorber le
rayonnement) reposant sur sa face inférieure sur un isolant thermique et exposé au soleil
par sa face supérieure. Les faces latérales verticales sont également calorifugées et ne
regoivent aucun rayonnement. Le tuyau est parcouru par un courant d’eau permanent
dans la direction de l'axe = et de débit massique D,,. La capacité thermique de l’eau est
cp =4,2kJ kg7 P KL,

La lumiere solaire est entierement absorbée par le tuyau. L’éclairement du tuyau
(puissance solaire regue par unité de surface de tuyau) est notée E. On étudie le régime
permanent d’écoulement une fois celui-ci établi. Le régime transitoire de montée en
température n’est pas abordé : la température ne dépend donc pas du temps. On
supposera que T' = T'(z).

Puissance solalm pertes ¥
A

: Ty

I
L

R

1
1

eau
T débit D,,
tuyau en cuivre

» X

Le cuivre étant un excellent conducteur thermique, on peut supposer que tout le métal,
y compris sa face noircie est a la méme température T'(z) que l'eau dans le tuyau a la
méme abscisse x. Les seuls transferts thermiques envisagés se font selon y (pas de
diffusion thermique dans le sens z de la convection, ni dans ’eau ni dans le cuivre). Si
Uair extérieur a la température Ty est plus froid que le tuyau, il y a inévitablement des
pertes thermiques vers 'atmosphere (ou un gain si lair extérieur est plus chaud).

1. Préciser l'origine physique de ces pertes, et justifier qu’elles peuvent s’écrire par
unité de longueur sous la forme dP,crtes = ab(T — Tp)dz ol a est une constante dont
'expression n’est pas demandée.

2. Appliquer le premier principe en régime stationnaire a ’eau contenue entre les
abscisses x et x + dz. On posera 0(x) = T(x) — Tp. Quelle est ’équation vérifiée par
0(x)?

3. Résoudre cette équation en supposant que ’eau entre en z = 0 a la température
Ti. On fera apparaitre une dimension L caractéristique du probleme. Le débit
massique étant imposé par le cahier des charges, quelle longueur faut-il choisir
pour optimiser le dispositif ? Pourquoi est-il préférable de placer ’ensemble sous
une vitre transparente ?
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 15 : Equation de la chaleur

Dans tout ’exercice, on utilisera les dérivées partielles. Si f est une fonction de z et de y,

la dérivée partielle de f par rapport a = est notée af( Y) = %ﬂw. Pour calculer
une dérivée partielle, on fait un calcul habltuel de dérivée par rapport a x en considérant

que y est fixé. Par exemple, si f(z,y) = 23y—y +"’“", gi(:c y) = 33: y+1, gi(x y)=2x —2y——

of
On peut ensuite faire des dérivées secondes : g L(z,y) = (deg; a: (@) ggx(x,y) =

2L (z,y+dy)— L (z,y)
dy

On considere une barre, de section S dont la température est notée T'(z,t) : elle dépend
a la fois de la position = et du temps ¢t. On veut établir une équation sur T.

. Pour la fonction donnée en exemple, a—x{(m,y) = 6xy

On considéere une "coupe" de la barre en z. On suppose que le flux de transfert thermique,
c’est-a-dire la puissance transmise par unité de surface, de la partie gauche de la barre

vers la partie droite, s’écrit
. AaT( 9
= - )—(z
]Q ax )

C’est la loi de Fourier. (a: t) désigne la dérivée de T par rapport a z, a t fixé.
1. Discuter du signe devant la dérivée partielle. Qu’est-ce que cela veut dire vis-a-vis

du flux d’énergie ?

On considere le systeme fermé suivant : la partie de la barre située entre les
abscisses x et x + dx (cf figure 4). On effectue un bilan d’énergie entre les dates ¢
et t + dt, avec dx et dt infiniment petits.

Jjo(z,t) —— —— Jjo(z + dx,t)

T T + dx

2. Montrer que le premier principe s’écrit :
dU(z,t +dt) — dU(z,t) = S(jo(z,t) — jo(z + dz,t))dt

avec dU ’énergie interne du systeme.

3. Calculer dU en fonction de ¢ la capacité thermique massique du systéme, p sa
masse volumique, T sa température, dx et S.

t@T o orT

montrer ’équation de la chaleur :
Ox Ox*

4. En notan

o
“ot = " 0xz2

5. On pose D = ﬁ le coefficient de diffusion. Donner, en fonction de D, une longueur
typique sur laquelle se sera propagée [’énergie en un temps t.

6. Montrer que les solutions, si un état stationnaire est atteint, sont des fonctions
affines de x.

7. On suppose que notre barre est connectée a gauche (en x = 0) a un thermostat (un
réservoir qui impose a la barre sa température) a la température T}, et a droite (en
x = L) a un thermostat a la température T5. Calculer T'(x) dans l’état stationnaire.
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O Physicité IPhO : Thermodynamique (exercices)

Exercice 16 : Cuire un oceuf dur (IPhOs 2006)

Un ceuf, sorti directement du réfrigérateur a la température T, = 4°C, est plongé dans
une casserole d’eau bouillante a la température T3.

1. Quelle est la quantité d’énergie U requise pour coaguler tout Uintérieur de U'ceuf?
2. Quelle est la valeur du flux de transfert thermique j qui s’écoule dans 'ceuf?

3. Quelle est la puissance thermique P transmise a l'ceuf?

4. Pendant combien de temps devriez-vous cuire 'ceuf afin qu’il devienne dur?

Indications : j est défini comme dans l’exercice précédent, la puissance transmise par
unité de surface, de U'extérieur vers lintérieur, il s’exprime en Wm™2. Vous pouvez
utiliser la forme simplifiée de la loi de Fourier j = kAT/Ar , ou AT est la différence de
température caractéristique observée sur ’échelle de longueur typique du probleme Ar.

Données : La masse volumique de l'ceuf : y = 103kgm~3.

La capacité thermique massique de l'ceuf : C =4.2J K- 1g~!

Rayon de U'ceuf : R = 2.5cm

La température de coagulation de l'albumen (protéine de U'ceuf) : T, = 65°C.

Le coefficient de transport thermique : k = 0.64W K 'm~! (en admettant qu’il est le
méme pour 'albumen liquide et solide).

5 Probleme

L’exercice suivant est un probleme complet issu du test de présélection frangais de 2025.
Il nécessite la maitrise du cours sur les ondes et du cours de thermodynamique et peut étre
utilisé comme probléme de révision de ces deux chapitres.

Probléme : Le thermophone a tube a essai (adapté du test de présélection des IPhO
2025)

Dans tout l’exercice, on utilise la notation a% pour indiquer qu’on dérive une fonction qui
dépend de plusieurs variables par rapport a y en laissant fixes les autres variables.

Dans ce probleme, on sera également amené a utiliser la deuxieme loi de Newton (aussi
appelée principe fondamental de la dynamique (PFD)). Cette loi, au programme de terminale,
sera décrite lors du cours de mécanique 1. La masse d’un objet multipliée par 'accélération de
son centre de masse est égale a la somme des forces extérieures qui s’appliquent sur le corps.

Introduction

La thermoacoustique est ’étude des phénomenes résultant de Uinteraction entre un flux
de chaleur et une onde acoustique. Bien que cette thématique de recherche soit peu connue
du grand public, les manifestations de l’effet thermoacoustique sont en fait observées depuis
longtemps. Les souffleurs de verre constatent par exemple depuis des siecles que leurs tubes
produisent parfois de violents sifflements. Dans ce probleme, on étudie la production d’un son
musical grace a Ueffet thermoacoustique, par lintroduction d’une source de chaleur localisée
dans un tuyau sonore. Le premier instrument de musique fonctionnant sur ce principe était
un orgue a flammes construit par Kastner en 1873, qu’il appela « pyrophone ». Le pyrophone
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O Physicité IPhO : Thermodynamique (exercices)

fut perfectionné dans les années 2000 par Jacques Rémus, musicien et plasticien, qui mit au
point le « thermophone », dans lequel il remplaga les flammes par des résistances électriques
chauffantes. Un thermophone est formé d’un tuyau en acier doux, verre ou aluminium, qui est
ouvert au moins a l'une de ses extrémités pour rendre le son audible. A Uintérieur du tuyau,
on place un stack solide (empilement de plaques ou grilles métalliques, ou réseau de canaux
rectangulaires en céramique), et on le chauffe. Lorsque la température de U'extrémité chaude
devient suffisamment élevée, le thermophone se met a chanter . .. Il génére un son particulier,
puissant et trés pur spectralement.

1. Onde acoustique dans un tube a essai

Le tube a essai est assimilé a une enceinte cylindrique indéformable de longueur L= 14 cm,
de section d’aire S et dont 'axe de symétrie est selon la direction de 'axe (Ox). L’extrémité
fermée du tube est située a l'abscisse x = 0 et son extrémité ouverte a x = L. Au repos,
c’est-a-dire en 'absence d’onde sonore, la température, la pression et la masse volumique de
’air dans le tube sont uniformes notées respectivement Ty, Py et py. Par ailleurs, on néglige
tout effet de la pesanteur, ainsi que toutes les interactions visqueuses entre le gaz et les
parois du tube de sorte que le mouvement du gaz se fait uniquement dans la direction x. Les
propriétés du gaz peuvent alors étre considérées uniformes dans les directions transverses
y et z a tout instant. Pour décrire les vibrations de la colonne d’air dans le tube a essai, on
la « découpe » en portions mésoscopiques qu’on appelle « particules de fluide ». Le volume
de ces particules est suffisamment grand par rapport a 'échelle microscopique pour qu’on
puisse y définir une pression, une température et une masse volumique. Mais il est également
suffisamment petit par rapport a l’échelle macroscopique pour pouvoir considérer que toutes
ces grandeurs y sont uniformes.

dx
! I . x L@
B L -x
L Xo xo+¢&

FIGURE 2 - Schéma de la situation & ’échelle macroscopique (a gauche) et & I'échelle mésoscopique (a droite)

Le systeme étudié a partir de maintenant est une particule de fluide dans le tube, d’épaisseur
dr < L, de surface dS et de volume dV = dzdS. En ’absence de viscosité, cette particule est
astreinte a se déplacer longitudinalement, sa position étant repéré par l’abscisse z(t) de sa
face gauche. Quand une onde stationnaire se forme dans le tube, la particule oscille autour de
sa position d’équilibre notée zg. Ainsi z(t) = zo+&(x,t), avec {(z,t) le « déplacement longitudinal
» de la particule qu’on admet étre de la forme {(z,t) = &, sin(kz) cos(wt), ou &, est 'amplitude
des oscillations acoustiques, w = 27 f la pulsation de l'onde et f sa fréquence, k = 27” son

nombre d’onde et A sa longueur d’onde.

1. Rappeler la relation liant la célérité c d’'une onde, sa fréquence f et sa longueur d’onde \
En déduire la relation liant w et k.

La pression et la température locales s’écrivent :
P(x,t) = Py + p(z,t), p(x,t) = —pm cos(kz) cos(wt),

T(x,t) =Ty + 7(x,t), 7(x,t) = —7pm cos(kx) cos(wt),
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et la masse volumique :
p(x,t) = po — om cos(kx) cos(wt).
On admet o,,,/p0 < pm/FPo €t om/po < 7m/Th, donc p =~ py.

On admet également :
—1
Tm = 7719—mT0, v =14
v B
2. Exprimer les forces de pression exercées par les particules voisines situées juste a gauche
et juste a droite.

3. Exploiter la seconde loi de Newton pour en déduire, dm = podV :
0%¢ ap

P = o
4. Exprimer p,, en fonction de ¢, w, pg et &,,.

5. En supposant la surpression acoustique nulle en z = L, montrer que :

T
k= (2 1)—.
(2n + >2L
T T T T T T T T T T
B
-
E
]
2
g
2
o
g
k=t
5
A
. | Il\l | | L 1 | |

0 02 04 06 08 1 12 14 16 1,8 2 22 24 26 28 3 32 34 36 38 4
Fréquence (kHz)

6. Analyser le spectre en fréquences fourni.

7. Montrer, a partir des réponses aux questions 1 et 6, que la fréquence du son produit par
le thermophone de la vidéo introductive correspond au mode propre fondamental de
vibration du tube. On donne la valeur de la célérité du son dans l’air a une température
de 20°C, sous pression atmosphérique : ¢ = 340m.s—1. Commenter U’écart éventuellement
constaté avec la mesure expérimentale.

2. Condition d’amplification thermoacoustique

. T
by

O%---ou-s Xs = f{Z_ NP HZ_ _______ -x
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Un stack de longueur ¢ est centré en z; = L /2. Ses extrémités sont a :

AT, AT,
T. =Ty + —2, Ty =Ty — —.
2 2
La température du stack est :
AT, AT,
Ts(m):TO‘FTS(.Ts—.I‘) :T0+VT3(ZCS—ZC), VT, = gs.

Au centre (zg = z), la particule oscille :
f(l’, t) = ém Sin(kl's) cos(wt), ]{jxs = %

Pour simplifier la modélisation qui suit, le mouvement sinusoidal de la particule est désormais
décomposé en une phase de mouvement rapide 1 — 2, une phase d’arrét 2 — 3, une nouvelle
phase de mouvement rapide en sens inverse 3 — 4 et une derniére phase d’arrét 4 — 1. Cette
séquence « articulée » de mouvements est représentée ci-dessous.

Glxs )
1

8. Déterminer les positions x4 et xzos3.
9. En déduire Ty 41 et T, 23 de fagon approchée.
Quand la particule de fluide se déplace rapidement le long du stack, elle n’a pas le temps

d’échanger une quantité significative de chaleur avec la plaque. Sa température a lissue des
phases de mouvement 1 — 2 et 3 — 4 est donc celle associée a 'onde acoustique.

T(x,t) =T(xs,t) =To+ 7(xs,t) = Ty — Tipy cos(kxs) cos(wt)

avec kx, = 7.

10. Déterminer les températures T, et T, de la particule a la fin des phases de mouvement
1—2et3— 4 en fonction de Ty, VT, et 7,,.

Pour que la particule fournisse effectivement un travail au fluide environnant et participe, avec
toutes les autres particules dans le stack, a amplifier puis entretenir 'onde stationnaire dans
le tube, il faut qu’elle recoive (respectivement qu’elle cede) de la chaleur du stack depuis le
point de température la plus élevée (respectivement la moins élevée) de son mouvement.

11. Montrer alors qu’il y a conversion d’énergie thermique en travail acoustique a condition
que le gradient de température du stack soit suffisamment grand.

Préparation aux olympiades — version 2025-26 — contributeur-ice-s : Loise Launay, Mathurin Rouan
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